Introduction aux microondes et antennes

Série 1

Problème 1

Une ligne de transmission a les paramètres par unité de longueur suivants :

 $L=0.2 \mu H/m$

C=300pF/m

 $R=5\Omega/m$

G=0.01S/m

Calculer la constant de propagation et l'impédance caractéristique de cette ligne à 0.5GHz. Recalculer ces quantités dans le cas sans pertes.

Problème 2

Une ligne de transmission sans pertes est terminée par une charge de 100Ω . Le rapport d'onde stationnaire (SWR, ROS) mesuré est de 1.5. Trouver les deux valeurs possibles pour l'impédance caractéristique de la ligne

Problème 3

Un émetteur-récepteur ayant une impédance de sortie de 50Ω est connecté à une antenne présentant une impédance de $80+j40\Omega$, à l'aide d'un câble coaxial ayant une impédance caractéristique de 50Ω . Si l'émetteur est capable de transmettre 30W à une charge de 50Ω , quelle sera la puissance délivrée à l'antenne?